Regulation on requirements to length measuring instruments

Established by the Norwegian Metrology Service dd.dd.yyyy in accordance with the Units of measurement, measurement and standard time Act of 26 January 2007 no 4 § 35, cf. § 7 and § 10, and § 8, § 19 and § 30 and regulation December 20th 2007 no. 1723 on measuring units and measurements § 5-2 second subsection.

Chapter 1 – Introductory provision

§ 1. Scope

The regulation prescribes the requirements which applies to length measuring instruments, cf. regulation December 20th 2007 no. 1723 on measuring units and measurements chapter 3 and supplementary provisions on control and approval in service.

The requirements of this regulation applies when

a) such length measuring instruments are sold or offered for sale, cf. regulation on measuring units and measurements § 3-1 and when

b) the measurement result of such length measuring instruments will be used in economic transactions, cf. regulation on measuring units and measurements § 3-4.

This regulation does not prescribe requirements to electromagnetic disturbance. Electromagnetic disturbance is regulated by regulation August 10th 1995 no. 713 on electric equipment.

§ 2. Definitions

In this regulation, the following definitions apply:

a) Length measuring instrument: A length measuring instrument serves for the determination of the length of rope-type materials (e.g. textiles, bands, cables) during feed motion of the product to be measured.

b) Measurand: the particular quantity subject to measurement

c) Influence quantity: A quantity that is not the measurand but that affects the result of measurement

d) Rated operating conditions: The values for the measurand and influence quantities making up the normal working conditions of an instrument

 e) Disturbance: An influence quantity having a value within the limits specified in the appropriate requirement but outside the specified rated operating conditions of the measuring instrument. An influence quantity is a disturbance if for that influence quantity the rated operating conditions are not specified.

f) Critical change value: The value at which the change in the measurement result is considered undesirable.
g) Direct sales: A trading transaction is direct sales if:
 1. The measurement result serves as the basis for the price to pay
 2. At least one of the parties involved in the transaction related to
 measurement is a consumer or any other party requiring a
 similar level of protection, and
 3. All the parties in the transaction accept the measurement
 result at that time and place.

h) Climatic environments: The conditions in which measuring instruments may be
 used. To cope with climatic differences between the Member States of the EEC, a
 range of temperature limits has been defined.

§ 3. Requirements to length measuring instruments

Length measuring instruments shall as a minimum fulfill the essential requirements
established in chapter 2. Maximal permissible errors for Length measuring instruments is
established in § 30.

Length measuring instruments which have been national type examined during a
former legislation, shall in service fulfill the requirements which applied when the length
measuring instrument was national type examined, including the requirements for
measurement accuracy in service.

Length measuring instruments which are not lawfully conformity marked or has a
valid national type examination and national verification, is not allowed in service.

§ 4. Surveillance and approval of sale of length measuring instruments

Length measuring instruments which are sold or offered for sale shall have a valid
conformity assessment according to the provisions in regulation on measuring units and
measurements chapter 4.

§ 5. Surveillance of a length measuring instrument in service

A length measuring instrument is subject to periodic surveillance. The surveillance
period for a length measuring instrument is three years.

Testing of length measuring instruments in conjunction with the surveillance shall be
carried out according to relevant parts of the applicable OIML R66 and the procedures of the
Norwegian metrology service, unless the Norwegian metrology service considers that the
testing should be carried out in a more appropriate and metrologically justifiable manner.

Chapter 2 - Requirements for length measuring instruments

Section I - General requirements
§ 6. Metrological protection and level of quality

A length measuring instrument shall provide a high level of metrological protection in order that any party affected can have confidence in the result of measurement, and shall be designed and manufactured to a high level of quality in respect of the measurement technology and security of the measurement data.

§ 7. Intended use and foreseeable misuse

The solutions adopted in the pursuit of the requirements shall take account of the intended use of the length measuring instrument and any foreseeable misuse thereof.

§ 8. Allowable errors

Under rated operating conditions and in the absence of a disturbance, the error of measurement shall not exceed the maximum permissible error value as laid down in section II.

Unless stated otherwise in section II, the maximum permissible error is expressed as a bilateral value of the deviation from the true measurement value.

Under rated operating conditions and in the presence of a disturbance, the performance requirement shall be as laid down in section II.

Where the length measuring instrument is intended to be used in a specified permanent continuous electromagnetic field the permitted performance during the radiated electromagnetic field-amplitude modulated test shall be within the maximum permissible error.

§ 9. Influence quantities

The manufacturer shall specify the climatic and electromagnetic environments in which the length measuring instrument is intended to be used, power supply and other influence quantities likely to affect its accuracy, taking account of the requirements laid down in section II.

§ 10. Climatic environments

The manufacturer shall specify the upper temperature limit and the lower temperature limit from any of the values in Table 1, and indicate whether the length measuring instrument is designed for condensing or non-condensing humidity as well as the intended location for the instrument is open or closed.

Table 1

<table>
<thead>
<tr>
<th>Upper temperature limit</th>
<th>30 °C</th>
<th>40 °C</th>
<th>55 °C</th>
<th>70 °C</th>
</tr>
</thead>
</table>

§ 11. Mechanical environments

Mechanical environments are classified into the following classes:

Table 2

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>This class applies to instruments used in locations with vibration and shocks of low significance, e.g. for instruments fastened to light supporting structures subject to negligible vibrations and shocks transmitted from local blasting or pile-driving activities, slamming doors, etc.</td>
</tr>
<tr>
<td>M2</td>
<td>This class applies to instruments used in locations with significant or high levels of vibration and shock, e.g. transmitted from machines and passing vehicles in the vicinity or adjacent to heavy machines, conveyor belts, etc.</td>
</tr>
<tr>
<td>M3</td>
<td>This class applies to instruments used in locations where the level of vibration and shock is high and very high, e.g. for instruments mounted directly on machines, conveyor belts, etc.</td>
</tr>
</tbody>
</table>

The following influence quantities shall be considered in relation with mechanical environments:

a) Vibration
b) Mechanical shock.

§ 12. Electromagnetic environments

Unless otherwise laid down in section II, electromagnetic environments are classified into the following classes:

Table 3
<table>
<thead>
<tr>
<th>E1</th>
<th>This class applies to instruments used in locations with electromagnetic disturbances corresponding to those likely to be found in residential, commercial and light industrial buildings.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>This class applies to instruments used in locations with electromagnetic disturbances corresponding to those likely to be found in other industrial buildings.</td>
</tr>
<tr>
<td>E3</td>
<td>This class applies to instruments supplied by the battery of a vehicle. Such instruments shall comply with the requirements of E2 and the following additional requirements: voltage reductions caused by energising the starter-motor circuits of internal combustion engines, and load dump transients occurring in the event of a discharged battery being disconnected while the engine is running.</td>
</tr>
</tbody>
</table>

The following influence quantities shall be considered in relation with electromagnetic environments:

a) Voltage interruptions
b) Short voltage reductions
c) Voltage transients on supply lines and/or signal lines, electrostatic discharges,
d) Radio frequency electromagnetic fields
e) Conducted radio frequency electromagnetic fields on supply lines and/or signal lines
f) Surges on supply lines and/or signal lines.

Other influence quantities to be considered, where appropriate, are:

a) Voltage variation
b) Mains frequency variation
c) Power frequency magnetic fields
d) Any other quantity likely to influence in a significant way the accuracy of the instrument.

§ 13. Basic rules for testing and the determination of errors

Essential requirements specified in § 8 shall be verified for each relevant influence quantity. Unless otherwise specified in section II, these essential requirements apply when each influence quantity is applied and its effect evaluated separately, all other influence quantities being kept relatively constant at their reference value.

Metrological tests shall be carried out during or after the application of the influence quantity, whichever condition corresponds to the normal operational
status of the length measuring instrument when that influence quantity is likely to occur.

§ 14. Ambient humidity

According to the climatic operating environment in which the length measuring instrument is intended to be used either the damp heat-steady state (non-condensing) or damp heat cyclic (condensing) test may be appropriate.

The damp heat cyclic test is appropriate where condensation is important or when penetration of vapour will be accelerated by the effect of breathing. In conditions where non-condensing humidity is a factor the damp-heat steady state is appropriate.

§ 15. Reproducibility

The application of the same measurand in a different location or by a different user, all other conditions being the same, shall result in the close agreement of successive measurements. The difference between the measurement results shall be small when compared with the maximum permissible error.

§ 16. Repeatability

The application of the same measurand under the same conditions of measurement shall result in the close agreement of successive measurements. The difference between the measurement results shall be small when compared with the maximum permissible error.

§ 17. Discrimination and sensitivity

A length measuring instrument shall be sufficiently sensitive and the discrimination threshold shall be sufficiently low for the intended measurement task.

§ 18. Durability

A length measuring instrument shall be designed to maintain an adequate stability of its metrological characteristics over a period of time estimated by the manufacturer, provided that it is properly installed, maintained and used according to the manufacturer’s instruction when in the environmental conditions for which it is intended.

§ 19. Reliability
A length measuring instrument shall be designed to reduce as far as possible the effect of a defect that would lead to an inaccurate measurement result, unless the presence of such a defect is obvious.

§ 20. Suitability

A length measuring instrument shall be:

a) Suitable for its intended use taking account of the practical working conditions and shall not require unreasonable demands of the user in order to obtain a correct measurement result.

b) Robust and its materials of construction shall be suitable for the conditions in which it is intended to be used.

c) Designed so as to allow the control of the measuring tasks after the instrument has been placed on the market and put into use. If necessary, special equipment or software for this control shall be part of the measuring instrument. The test procedure shall be described in the operation manual.

d) Insensitive to small fluctuations of the value of the measurand, or it shall take appropriate action, when the measuring instrument is designed for measurement of values of measurand that are constant over time.

A length measuring instrument shall have no feature likely to facilitate fraudulent use, whereas possibilities for unintentional misuse shall be minimal.

When a length measuring instrument has associated software which provides other functions besides the measuring function, the software that is critical for the metrological characteristics shall be identifiable and shall not be inadmissibly influenced by the associated software.

§ 21. Protection against corruption

If the length measuring instrument gets connected to another device, direct or by any remote device that communicates with it, shall its metrological characteristics not be influenced in any inadmissible way.

The hardware components that are critical for metrological characteristics shall be designed so that they can be secured. Security measures foreseen shall provide for evidence of an intervention.

Software that is critical for metrological characteristics shall be identified as such and shall be secured. Software identification shall be easily provided by the measuring instrument. Evidence of an intervention shall be available for a reasonable period of time.

Measurement data, software that is critical for measurement characteristics and metrologically important parameters stored or transmitted shall be adequately protected against accidental or intentional corruption.
§ 22. Information to be borne by and to accompany the length measuring instrument

A length measuring instrument shall bear the manufacturer's mark or name and information in respect of its accuracy. When applicable the measuring instrument shall also bear the following information:

a) Relevant information in respect of the conditions of use
b) Measuring capacity
c) Measuring range
d) Identity marking
e) Number of the EC-type examination certificate or the EC design examination certificate
f) Information whether or not additional devices providing metrological results comply with the regulations on legal metrological control.

Information on its operation shall accompanied the length measuring instrument, unless the simplicity of the instrument makes this unnecessary. Information shall be easily understandable and shall include where relevant:

a) Rated operating conditions
b) Electromagnetic environment
c) The upper and lower temperature limit, if condensation is possible or not, open or closed location
d) Instructions for installation, maintenance, repairs, permissible adjustments
e) Instructions for correct operation and any special conditions of use;
f) Conditions for compatibility with interfaces, sub-assemblies or measuring instruments.

All marks and inscriptions required shall be clear, unambiguous, non-erasable and non-transferable. Groups of identical length measuring instruments do not require individual instruction manuals.

§ 23. Specification of measured value

Unless specified in section II, the scale interval for a measured value shall be in the form 1×10^n, 2×10^n, or 5×10^n, where n is any integer or zero. The unit of measurement or its symbol shall be shown close to the numerical value.

The units of measurement and symbols used shall be in accordance with regulations on measuring units and measurements.

§ 24. Indication of result
Indication of the result shall be by means of a display or hard copy. In the case of hard copy the print or record shall also be easily legible and non-erasable.

The indication of any result shall be clear and unambiguous and accompanied by such marks and inscriptions necessary to inform the user of the significance of the result. Easy reading of the presented result shall be permitted under normal conditions of use. Additional indications may be shown provided they cannot be confused with the metrologically controlled indications.

A length measuring instrument for direct sales trading transactions shall be designed to present the measurement result to both parties in the transaction when installed as intended. When critical in case of direct sales, any ticket provided to the consumer by an ancillary device not complying with the appropriate requirements of this regulation shall bear an appropriate restrictive information.

§ 25. Further processing of data to conclude the trading transaction

The length measuring instrument shall record by a durable means the measurement result accompanied by information to identify the particular transaction, when the measurement is non-repeatable and the measuring instrument is normally intended for use in the absence of one of the trading parties.

Additionally, a durable proof of the measurement result and the information to identify the transaction shall be available on request at the time the measurement is concluded.

§ 26. Conformity evaluation

A length measuring instrument shall be designed so as to allow ready evaluation of its conformity with the appropriate requirements of this regulation.

Section II - Specific requirements

§ 27. Electromagnetic immunity

The effect of an electromagnetic disturbance on a dimensional measuring instrument shall be such that

a) the change in measurement result is no greater than the critical change value as defined in second subsection,

b) it is impossible to perform any measurement,

c) there are momentary variations in the measurement result that cannot be interpreted, memorised or transmitted as a measuring result,
d) there are variations in the measurement result severe enough to be noticed by all those interested in the measurement result.

The critical change value is equal to one scale interval (d).

§ 28. Characteristics of the product to be measured

Textiles are characterised by the characteristic factor K. This factor takes the stretchability and force per unit area of the product measured into account and is defined by the following formula:

\[K = \varepsilon \cdot (GA + 2,2 \text{ N/m2}), \]

where \(\varepsilon \) is the relative elongation of a cloth specimen 1 m wide at a tensile force of 10 N, GA is the weight force per unit area of a cloth specimen in N/m2.

29. Operating conditions

Dimensions and K-factor, where applicable, within the range specified by the manufacturer for the instrument. The ranges of K-factor are given in table 4:

<table>
<thead>
<tr>
<th>Group</th>
<th>Range of K</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(0 < K < 2 \times 10^{-2}) N/m²</td>
<td>low stretchability</td>
</tr>
<tr>
<td>II</td>
<td>(2 \times 10^{-2} \text{ N/m²} < K < 8 \times 10^{-2} \text{ N/m²})</td>
<td>medium stretchability</td>
</tr>
<tr>
<td>III</td>
<td>(8 \times 10^{-2} \text{ N/m²} < K < 24 \times 10^{-2} \text{ N/m²})</td>
<td>high stretchability</td>
</tr>
<tr>
<td>IV</td>
<td>(24 \times 10^{-2} \text{ N/m²} < K)</td>
<td>very high stretchability</td>
</tr>
</tbody>
</table>

Where the measured object is not transported by the measuring instrument, its speed must be within the range specified by the manufacturer for the instrument.

§ 30. Maximum permissible error

Table 5 shows the maximum permissible error, where Lm is the minimum measurable length, that is to say the smallest length specified by the manufacturer for which the instrument is intended to be used.

<table>
<thead>
<tr>
<th>Accuracy class</th>
<th>Maximum permissible error</th>
</tr>
</thead>
</table>

10
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0,125 %, but not less than 0,005 Lₘ</td>
</tr>
<tr>
<td>II</td>
<td>0,25 %, but not less than 0,01 Lₘ</td>
</tr>
<tr>
<td>III</td>
<td>0,5 %, but not less than 0,02 Lₘ</td>
</tr>
</tbody>
</table>

The true length value of the different types of materials should be measured using suitable instruments, e.g. tapes of length. Thereby, the material which is going to be measured should be laid out on a suitable underlay straight and unstretched.

§ 31. Other requirements

The length measuring instruments must ensure that the product is measured unstretched according to the intended stretchability for which the instrument is designed.

Chapter 3 - Concluding provisions

§ 32. Infringement penalty

Violation of the requirements of this regulation may lead to order of infringement penalty, determined by the provisions of regulation on measuring units and measurements chapter 7.

§ 33. Entry into force

This regulation enters into force on xx.